
Abstract. The recently developed Asymptotic Density
Model (ADM) [6, 9] is here implemented in the density
functional framework using the program deMon-KS
[13]. While the original implementation divided the
atoms into a core shell and a valence shell, the present
version allows for an arbitrary number of shells making
it therefore more ¯exible and, as shown with benzene,
potentially more accurate. Moreover, since this method
is derived through Poisson's equation, an expression for
the electronic charge density is also obtained. However,
the present discussion will restrict itself to the electro-
static potential. Finally, even though this method
requires parametrization, it is shown that the parameters
obtained for homonuclear diatomic species, and used as
is in molecular calculations, yield satisfactory results.
Indeed, the ADM reproduces almost all basic features of
the MEP for all molecules presented here, (water,
ammonia, ethylene, acetylene, hydrogen cyanide, carbon
monoxide, benzene, nitrous acid).
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Introduction

The molecular electrostatic potential (MEP) has proven
to be a valuable property in many areas of chemistry [1].
The topography of the MEP has been used to identify
important features of the electronic structure of
molecules labelled as lone pairs, r and p bonds, and so
on, [2, 3]. Additionally, insight into the reactivity of
molecules can be gleaned from the MEP. For example,
MEP maps have been used to determine the reactivity of
organic compounds towards electrophilic species [1].
Furthermore, long range interactions being largely
electrostatic in nature, for example in molecular
recognition processes [4], the MEP provides essential

enlightenment. Solvation e�ects can also be mimicked
by the MEP, as in the reaction ®eld model of Tomasi [5],
which requires the computation of the MEP on the
surface of a cavity.

This quantity may be computed quantum-mechani-
cally, but one is then restricted to relatively small mo-
lecules because of the large cost of such calculations for
systems of even moderate size, if the values of the MEP
are required at a large number of points. In order to
handle larger systems, an approximate scheme is there-
fore necessary. Traditionally, the multipole expansion
(ME) has been used. However, the errors of the ME
grow as one leaves the long range region and enters the
important van der Waals region, closer to the nuclei.
Recently, KoÈ ster et al. have developed a new approx-
imate scheme, the Asymptotic Density Model (ADM)
[6], which yields a dramatically improved behavior of
the MEP over the ME, and at the same time retains
its computational e�ciency. In this model, Poisson's
equation (eq. (1)) is solved by partitioning the molecular
electronic density into atomic densities, assuming these
are monotonically decreasing functions of r [7] in a
piecewise exponential fashion, thereby re¯ecting the shell
structure of atoms [8]. Srebrenik, Weinstein and Pauncz
[9] have already done similar work. However, their
model constitutes more an approximate solution to
Poisson's equation than an approximation to the MEP
itself or, as is the starting point of the ADM, to the
electronic density. The ADM has already been succes-
fully implemented in the HF [6] and INDO [10] meth-
odologies. In this paper, we present an improved
implementation of the ADM in the linear combination of
gaussian type orbital-density fuctional (LCGTO-DF)
framework, using water, ammonia, ethylene, acetylene,
hydrogen cyanide, carbon monoxide, benzene and ni-
trous acid as examples.

The asymptotic density model

Instead of attempting to construct directly an approx-
imation for the MEP, one can begin by approximating
the charge density of the system and then generate the
MEP from Poisson's equation

Approximation of the molecular electrostatic potential
in a gaussian density functional method

M. Leboeuf, A.M. KoÈ ster* and D.R. Salahub

DeÂ partement de chimie, UniversiteÂ de MontreÂ al, C.P. 6128 Succ. Centre-ville, MontreÂ al, QC,
Canada H3C 3J7
CERCA-Centre de Recherche en Calcul AppliqueÂ 5160, Boul. DeÂ carie,
Bureau 400, MontreÂ al, QueÂ bec, Canada H3X 2H9

Received: 5 July 1996 /Accepted: 12 November, 1996

Theor Chem Acc (1997) 96:23±30

Original articles

*
Present address: Theoretische Chemie, UniversitaÈ t Hannover,

Am Kleinen Felde 30, 30167 Hannover, Germany

Correspondence to: D.R. Salahub



r2U�r� � ÿ4pq�r� �1�
U�r� and q�r� being respectively the MEP and total
charge density. Since the nuclear contribution to the
MEP is already known in a simple analytic form, the
total MEP can be divided into a nuclear and an
electronic part

Utotal�r� � Uelec�r� � Unuc�r�; Unuc�r� �
X

A

ZA

jRA ÿ rj
�2�

where ZA and RA are the charge and position of atom A.
All the e�ort is therefore put into determining Uelec i.e.
qelec.

In the original ADM scheme [6], the authors pro-
posed to express this electronic density as a sum of
atomic densities which were in turn sums of core, valence
and polarisation terms

qelec�r� �
X

A

qA
elec�rA� �3�

qA
elec�rA� � qA

elec;core�rA� � qA
elec;val�rA� � qA

elec;pol�rA� �4�
This scheme is suitable for all-electron split valence basis
sets for ®rst row atoms (Li-Ne) and valence electron
basis sets as used in the INDO methodology. However,
to be able to study heavier elements and use larger basis
sets, a more general scheme is needed. We, therefore,
propose here a more ¯exible approach in which the
atomic densities, qA

elec, (hereafter simply called qA) are
divided into shell densities

qA�rA� �
X

S

qA;S�rA� �5�

where the summation runs over the number S of shells.
In this way, we are not restricted to a ®xed number of
shells, but could in principle use as many shells as
desired. However, in practice the shell structure i.e. the
value of S in eq. (5) is dictated by the shell structure of
the basis set employed for the calculation. For example,
the popular 6-31G basis would give rise to three terms in
the expansion for ®rst row elements.

The atomic shell densities are represented as an ex-
pansion in Slater functions:

qA;S�rA� �
Xlmax

l�0

Xl

m�ÿl

dS
lmrl

AeÿfS
lmrA Slm�hA;/A� �6�

where l and m are the azimuthal and magnetic quantum
numbers, and where we again deviate from the original
ADM by allowing for the possibility of including higher
order spherical harmonics. As the reader may have
already recognized, this de®nition of qA;S�rA� is similar to
the auxiliairy basis set approach in DFT [11], except that
we have used Slater type functions instead of gaussians.

With this de®nition for the electronic density, the
electronic part of Poisson's equation becomes, for each
atom

1
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o
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r2A
o

orA
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Since the spherical harmonics are eigenfunctions of the
L̂2 operator,

L̂2Slm � l�l� 1�Slm �8�
we can decompose UA�rA� in a similar fashion as qA�rA�,
that is shell contributions which in turn are sums of a
radial term multiplied by an angular part
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and we now have to solve a di�erential equation in rA
onlyXlmax

l�0

Xl

m�ÿl

1

r2A

o
orA

r2A
oUS

lm

orA

� �
Slm ÿ l�l� 1�

r2A
US

lmSlm �

ÿ 4p
Xlmax

l�0

Xl

m�ÿl

dS
lmrl

AeÿfS
lmrA Slm �11�

But it has to be solved for every shell. We therefore seek
a general solution for any given l;m combination.
Starting from the homogeneous solution

US;hom:
lm � Almrl

A �
Blm

rl�1
A

�12�

and taking the following special solution of eq. (11)
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we construct the general solution

US;gen:
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To ®x Alm and Blm, similar constraints as in the original
paper are imposed, which ensure the proper behavior for
the MEP both at long distances and at the nucleus, that is

lim
rA!0

US
lm�rA� � constant �15�

lim
rA!1

US
lm�rA� � 0 �16�

We then ®nd

Alm � 0 �17�

Blm � 8p�l� 1�dS
lm�2l�!

�fS
lm�2l�3 �18�
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so that

US
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00
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00�2
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To determine the expansion coe�cients dS
lm, we rely on

the fact that at long distances, the ME is valid. Then, eq.
(16) can be rewritten as

lim
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from which we get
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Substituting (17), (18) and (21) in (14), we obtain the
®nal solution for the electronic part of the MEP
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where the qS
lm, introduced via eq. (20), are chosen to be

the cumulative atomic multipole moments (CAMM's)
[12]. They can be thought of as weighting factors that
multiply the contributions of the corresponding shells,
arising from the representation of the shell densities by
Slater functions. In principle, any de®nition could be
used for the qS

lm, but CAMM's have two undeniable
advantages: they are invariant with respect to the
orientation of the coordinate system, and they yield a
potential U�r� more or less independent of the under-
lying population analysis, by virtue of their cumulative
character, even though the CAMM's themselves are not.
Moreover, since the model has to be parametrized, any
such dependence upon population analysis would tend
to be ¯attened out. Furthermore, the coordinate system
invariance removes the problem of having to take care of
the orientation of molecules in space. The only
quantities left unde®ned are the fS

lm. These are atomic
parameters and are obtained by a least squares ®tting of
the approximate electronic MEP to the quantum-
mechanical one (see below).

The above equations represent a computationally
e�cient method for calculating the MEP, overcoming
the major drawback of the ME, as stated earlier. To
study the dynamics of systems where the interactions
involved are largely dominated by electrostatics or sim-
ply to optimize two charge distributions relative to one
another, ®rst and second derivatives of the MEP are
needed [13]. Moreover, it is sometimes useful to locate
critical points of the MEP in order to get more quanti-
tative information [3]. The most e�cient methods to
perform this task rely again on the availability of deri-
vatives of the MEP [13]. Calculating the derivatives of
the MEP from equation (22) is straightforward. Once

Poisson's equation is solved, we have an expression for
U�rA� which we can di�erentiate very easily:
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where xi stands for x; y and z, and with ®rst derivatives
given by
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We also note that equations (3±6) represent an
approximate scheme to compute the electronic density
itself (from which we calculated the MEP in the ®rst
place). Hence, one can formulate a consistent scheme to
build approximations for Coulomb and exchange-
correlation energies.

LCGTO-Kohn-Sham implementation
and computational details

We have implemented the ADM in the LCGTO-Kohn-
Sham code deMon-KS. For a more thorough description
of the code, see reference [14]. The DZVP basis set was
used [15], which is of similar quality to the HF 6-31G*
basis. The quantum mechanical (QM) calculations of the
MEP used the Generalized Gradient Approximation
(GGA) exchange functional of Perdew and Wang [17]
and correlation functional of Perdew [18] in conjunction
with the local VWN functional [19]. The needed
CAMM's were calculated starting from the Mulliken
population analysis [20] of the Kohn-Sham orbitals. As
discussed earlier, there is no need to use a more
sophisticated population analysis. All geometries are
experimental, and come from ref. [16]. The current
implementation allows CAMM's up to octupole mo-
ments, which corresponds to lmax � 3 in eq. (6). As will
be seen later, this limit is su�cient to achieve
convergence. The maximum number of shells is set to
seven, and corresponding to S � 7 in eq. (5) and to the
minimum needed to allow for the parametrization of all
atoms up to Rn at the DZVP level.

The least squares ®tting procedure to determine the
fS

lm's in eq. (22) is done independently for each atom, and
then re®ned on the corresponding homonuclear dia-
tomic species along the internuclear axis. It is hoped that
the parameters hence obtained will be of general use.
Indeed, if the model has to be reparametrized for every
system to which it is applied, it then looses practicality.
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On the other hand, if the atomic parameters are still
valid in molecular calculations, then the model becomes
much more universal.

Results

As ®rst examples, ®gures (1)±(4) show the electronic part
of the QM and ADM MEP for all atoms parametrized
up to now, that is H, C, N and O, for both the atom and
the corresponding diatomic molecule. Table 1 gives
values for all fS

lm used in the calculations presented here.
One sees from those pictures that the ADM does exhibit
the proper behavior at the atoms. The quantitative
agreement is also very good. Indeed, as we get closer to
the nuclei, the discrepency between the ADM and QM
MEP increases, but up to a distance of around 1 to 1.5
a.u., i.e. inside the van der Waals region of the
molecules, the agreement is very good. For carbon and

nitrogen, although the quantitative agreement close to
the nuclei worsens slightly, it still remains very good. It is
worth noting that the expansion converges very rapidly.
As can be seen from the ®gures, already with charges i.e.
one term only in eq. (6), the ADM is almost converged.
Adding dipole and quadrupole contributions make little
change, except in the case of hydrogen where dipoles still
make a signi®cant improvement inside the van der Waals
region. In all cases studied, octupole moments had
virtually no in¯uence at all, so pictures of the ADM
MEP including the octupole terms are not presented.

From the foregoing discussions, it seems as if the
ADM really ful®lls its goal. But how well does it do for
molecular systems? Figures 5 to 12 show 2-dimensional
cuts of water, ammonia, acetylene, carbon monoxide,
hydrogen cyanide, ethylene, benzene and nitrous acid,
respectively. In (a) are the QM MEP and in (b), (c) and
(d) are the ADM ones calculated with expansion (6)
truncated after lmax � 0 (charge), 1 (dipoles) and 2

Fig. 1. Electronic MEP of H (top) and H2 along internuclear axis
(bottom) ÿÿÿÿ: QM, ÿÿ: ADM=�lmax � 0�; ÿ�ÿ: ADM=�lmax � 1�;
� � � : ADM=�lmax � 2�

Fig. 2. Electronic MEP of C (top) and C2 along the half internuclear
axis (bottom) ÿÿÿÿ: QM, ÿÿ: ADM=�lmax � 0�; ÿ�ÿ: ADM=
�lmax � 1�; � � � : ADM=�lmax � 2�
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(quadrupoles) respectively, and using the previously
diatomic-parametrized fS

lm's. In the ®rst four cases,
�H2O;NH3;C2H2;HCN�, the ADM reproduces very
well the QM MEP, even showing a very good quanti-
tative agreement with the latter all the way into the van
der Waals region. In fact, all major characteristics of the
MEP are reproduced by the ADM. For example, the
lone pairs of water are easily identi®able by the negative
region behind the oxygen, as are the ones of hydrogen
cyanide and ammonia. However, the ADM is not able to
distinguish between the two lone pairs of water (cf. be-
low for nitrous acid) and the inside of the umbrella of
ammonia has a more spherical shape than in the QM
picture. The triple bond of acetylene is well characterised
both by the QM and ADMMEP, with a negative region
of toroidal shape around it. As in the atomic (and dia-
tomic) case, the ADM converges very rapidly, terms
higher than lmax � 0 bringing no qualitative changes in
the ADM MEP, and the quantitative agreement im-

Fig. 3. Electronic MEP of N (top) and N2 along the half internuclear
axis (bottom) ÿÿÿÿ: QM, ÿÿ: ADM=�lmax � 0�; ÿ�ÿ: ADM=
�lmax � 1�; � � � : ADM=�lmax � 2�

Fig. 4. Electronic MEP of O (top) and O2 along the half internuclear
axis (bottom) ÿÿÿÿ: QM, ÿÿ: ADM=�lmax � 0�; ÿ�ÿ: ADM=
�lmax � 1�; � � � : ADM=�lmax � 2�

Table 1. fS
lm parameters for H,C,N and O.

fS
lm H C N O

f10m 1,00 0,79 0,86 0,94

f20m 1,20 1,10 1,00 1,00

f30m ± 3,60 2,60 1,60

f11m 2,80 1,00 1,00 1,00

f21m 1,00 0,50 0,75 1,00

f31m ± 4,20 3,20 2,20

f12m 3,00 1,00 1,00 1,00

f22m 1,00 1,00 1,00 1,00

f32m ± 1,00 1,00 0,50

f13m 1,00 1,00 1,00 1,00

f23m 1,00 1,00 1,00 1,00

f33m ± 1,00 1,00 1,00
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Fig. 5 a-d. Contour map of the MEP of water in the molecular
plane. a QM, b ADM=lmax � 0, c ADM=lmax � 1, d ADM=lmax � 2.
ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01 a.u. interval

Fig. 6 a-d. Contour map of the MEP of ammonia in one of the 3rv
planes. aQM, bADM=lmax � 0, cADM=lmax � 1, dADM=lmax � 2.
ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01 a.u. interval

Fig. 7 a-d. Contour map of the MEP of acetylene in a plane con-
taining the molecule. a QM, b ADM=lmax � 0, c ADM=lmax � 1, d
ADM=lmax � 2. ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01
a.u. interval

Fig. 8 a-d. Contour map of the MEP of hydrogen cyanide in a plane
containing the molecule a QM, b ADM=lmax � 0, c ADM=lmax � 1,
d ADM=lmax � 2. ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01
a.u. interval
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proving very little. In other words, spherical atomic
densities already yield a MEP exhibiting a good topo-
graphy, non spherical terms being more or less minor
corrections. This is in correspondance with Massey's
method to calculate the ®xed-nuclei static potential part
of electron scattering cross sections, which approximates
this potential by a linear combination of spherically sy-
metric atom-centered potentials [21].

For the last fourmolecules, �CO;C2H4;C6H6;HNO2�,
®gures 9 to 12, the ADM still gives a very good
description of the QM MEP, but second and even third
order terms �lmax � 2; 3 in eq. (6) or (10)), have to be
included in order to get as good a description as possi-
ble. At the ®rst order of approximation, carbon mon-
oxide (®gure 9) is simply wrong, with a positive region
behind the oxygen. At the second order, the situation
gets better, but it is only at the third that the ADMMEP
regains the shape of the QM one. In the case of benzene,
it is at lmax � 2 that the ADM gets a good representation
of the MEP, the ®rst order yielding a negative intracyclic
region. At the third order, the picture is virtually un-
changed. For nitrous acid, as was stated earlier for
oxygen, the intraatomic lone pairs are not separated by
ADM. However, both oxygens are distinguished by
ADM, provided that terms of the second order are in-
cluded in the calculation. Ethylene constitutes a curious
case, showing a good potential at ®rst order that dete-
riorates at second order, and then becomes good again
at the third order of approximation, the best picture
being the one at ®rst order.

Fig. 9 a-d. Contour map of the MEP of carbon monoxide in a plane
containing the molecule. a QM, b ADM=lmax � 0, c ADM=lmax � 1,
d ADM=lmax � 2. ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01
a.u. interval

Fig. 10 a-d. Contour map of the MEP of benzene in a plane
perpendicular to the molecule and containing two CH bonds. aQM, b
ADM=lmax � 0, c ADM=lmax � 1, d ADM=lmax � 2. ÿÿÿÿMEP � 0;
ÿÿMEP < 0; each line is at a 0.01 a.u. interval

Fig. 11 a-d. Contour map of the MEP of nitrous acid in
the molecular plane. a QM, b ADM=lmax � 0, c ADM=lmax � 1, d
ADM=lmax � 2. ÿÿÿÿMEP � 0; ÿÿMEP < 0; each line is at a 0.01
a.u. interval
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Conclusion

The Asymptotic Density Model is an excellent alter-
native to the atomic multipole expansion. Indeed, while
having almost as low a computational cost as the latter,
it overcomes its major drawback, that is it presents a
much improved behavior in the Van der Waals region of
molecules. The current implementation, which we feel is
better than the original one, seems to improve even
further this close range behavior. In fact, for all
molecules studied here except for one, HNO2, all basic
features of the quantum-mechanical MEP were repro-
duced by the ADM, which was not the case for benzene
in the original implementation. This means that for
applications for which a qualitatively good representa-
tion of the MEP is necessary but su�cient i.e. the
topography of MEP has to be good while the absolute
value need not be as good, e.g. in the visualization of
electron transfer reactions [22], the ADM can be
preferred over both the QM MEP and ME. The quanti-
tative agreement of the ADM with the QM MEP is also
quite good, especially taking into account the fact that
the model was parametrized on diatomic homonuclear
species, and those parameters used, as is, in all other

molecular calculations. Moreover, having derived the
ADM through Poisson's equation, we also have an
expression for the electronic charge density of the system
consistent with the MEP. And both of these expressions
are easily and straight forwardly di�erentiable.
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Fig. 12 a-d. Contour map of the MEP of ethylene in a plane
perpendicular to the molecule and containing the CC bond. a QM, b
ADM=lmax � 0, c ADM=lmax � 1, d ADM=lmax � 2. ÿÿÿÿMEP � 0;
ÿÿMEP < 0; each line is at a 0.01 a.u. interval
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